Low-temperature wafer-scale production of ZnO nanowire arrays.

نویسندگان

  • Lori E Greene
  • Matt Law
  • Joshua Goldberger
  • Franklin Kim
  • Justin C Johnson
  • Yanfeng Zhang
  • Richard J Saykally
  • Peidong Yang
چکیده

Since the first report of ultraviolet lasing from ZnO nanowires, substantial effort has been devoted to the development of synthetic methodologies for one-dimensional ZnO nanostructures. Among the various techniques described in the literature, evaporation and condensation processes are favored for their simplicity and high-quality products, but these gas-phase approaches generally require economically prohibitive temperatures of 800–900 8C. Despite recent MOCVD schemes that reduced the deposition temperature to 450 8C by using organometallic zinc precursors, the commercial potential of gas-phase-grown ZnO nanowires remains constrained by the expensive and/or insulating (for example, Al2O3) substrates required for oriented growth, as well as the size and cost of the vapor deposition systems. A low-temperature, large-scale, and versatile synthetic process is needed before ZnO nanowire arrays find realistic applications in solar energy conversion, light emission, and other promising areas. Solution approaches to ZnO nanowires are appealing because of their low growth temperatures and good potential for scale-up. In this regard, Vayssieres et al. developed a hydrothermal process for producing arrays of ZnO microrods and nanorods on conducting glass substrates at 95 8C. Recently, a seeded growth process was used to make helical ZnO rods and columns at a similar temperature. Here we expand on these synthetic methods to produce homogeneous and dense arrays of ZnO nanowires that can be grown on arbitrary substrates under mild aqueous conditions. We present data for arrays on four-inch (ca. 10 cm) silicon wafers and two-inch plastic substrates, which demonstrate the ease of commercial scale-up. The simple two-step procedure yields oriented nanowire films with the largest surface area yet reported for nanowire arrays. The growth process ensures that a majority of the nanowires in the array are in direct contact with the substrate and provide a continuous pathway for carrier transport, an important feature for future electronic devices based on these materials. Well-aligned ZnO nanowire arrays were grown using a simple two-step process. In the first step, ZnO nanocrystals (5–10 nm in diameter) were spin-cast several times onto a four-inch Si(100) wafer to form a 50–200-nm thick film of crystal seeds. Between coatings, the wafer was annealed at 150 8C to ensure particle adhesion to the wafer surface. The ZnO nanocrystals were prepared according to the method of Pacholski. A NaOH solution in methanol (0.03m) was added slowly to a solution of zinc acetate dihydrate (0.01m) in methanol at 60 8C and stirred for two hours. The resulting nanoparticles are spherical and stable for at least two weeks in solution. After uniformly coating the silicon wafer with ZnO nanocrystals, hydrothermal ZnO growth was carried out by suspending the wafer upside-down in an open crystallizing dish filled with an aqueous solution of zinc nitrate hydrate (0.025m) and methenamine or diethylenetriamine (0.025m) at 90 8C. Reaction times spanned from 0.5 to 6 h. The wafer was then removed from solution, rinsed with deionized water, and dried. A field-emission scanning electron microscope (FESEM) was used to examine the morphology of the nanowire array across the entire wafer, while single nanowires were characterized by transmission electron microscopy (TEM). Nanowire crystallinity and growth direction were analyzed by X-ray diffraction and electron diffraction techniques. SEM images taken of several four-inch samples showed that the entire wafer was coated with a highly uniform and densely packed array of ZnO nanowires (Figure 1). X-ray diffraction (not shown) gave a wurtzite ZnO pattern with an enhanced (002) peak resulting from the vertical orientation of the nanowires. A typical synthesis (1.5 h) yielded wires with diameters ranging between 40–80 nm and lengths of 1.5–2 mm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothe...

متن کامل

Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods

The piezoelectric power generation from ZnO nanowire arrays grown on different substrates using different methods is investigated. ZnO nanowires were grown on n-SiC and n-Si substrates using both the high-temperature vapor liquid solid (VLS) and the low-temperature aqueous chemical growth (ACG) methods. A conductive atomic force microscope (AFM) is used in contact mode to defl ect the ZnO nanow...

متن کامل

Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces

A novel ZnO seedless chemical approach for density-controlled growth of ZnO nanowire (NW) arrays has been developed. The density of ZnO NWs is controlled by changing the precursor concentration. Effects of both growth temperature and growth time are also investigated. By this novel synthesis technique, ZnO NW arrays can grow on any substrate (polymer, glass, semiconductor, metal, and more) as l...

متن کامل

Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst.

We report an approach for growing aligned ZnO nanowire arrays with a high degree control over size, orientation, dimensionality, uniformity, and possibly shape. Our method combines e-beam lithography and a low temperature hydrothermal method to achieve patterned and aligned growth of ZnO NWs at <100degreesC on general inorganic substrates, such as Si and GaN, without using catalyst. This approa...

متن کامل

Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays

A facile, template-free method was used to grow large areas of well-aligned ZnO nanowire arrays on amorphous SiO2 substrates. The arrays are composed of vertically aligned, single-crystalline, wurtzitic [001] ZnO nanowires whose diameters were easily controlled by growth temperature, adjusted by changing the distance between the substrate and the precursor material in the growth chamber. A vapo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 42 26  شماره 

صفحات  -

تاریخ انتشار 2003